Three-phase Brushless

- Description

This product is the motor predriver for high-side/low-side N-channel MOS-FET drive, which has the built-in booster (step-up) circuit. BD6761FS uses the drive type controlled by the servo signal input from outside and BD6762FV incorporates a servo circuit (Speed discriminator + PLL servo).

- Features

1) Predriver for high-side/low-side N-channel MOS-FET
2) Built-in booster (step-up) circuit
3) Built-in FG and hysteresis amplifiers
4) Built-in current limit circuit
5) Built-in thermal shutdown circuit
6) Built-in forward/reverse rotation switching circuit (BD6761FS, FD6762FV)
7) Built-in short brake circuit (BD6761FS, BD6762FV)
8) Built-in low voltage protection circuit (BD6761FS, BD6762FV)
9) Built-in speed lock detection circuit (BD6762FV)
10) Built-in motor lock protection circuit (BD6762FV)
11) Built-in start-stop circuit (BD6762FV)
12) Built-in servo circuit (Speed discriminator + PLL) (BD6762FV)
13) Built-in frequency multiplication circuit (BD6762FV)
14) 180°, direct PWM drive (BD6761FS)
15) 120°, slope switchable direct PWM drive (BD6762FV)

-Applications

Main motor for paper feed of the laser beam printer and PPC

- Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter		Symbol	Ratings		
			BD6761FS	BD6762FV	
Applied voltage	VCC	36	36	V	
Applied voltage	VG	36	36	V	
Pin input voltage	Vin	VREG	VREG	V	
Power dissipation	Pd	$950\left({ }^{(1)}\right.$	$1100^{(* 2)}$	mW	
Operating temperature range	TOPR	$-35 \sim+75$	$-25 \sim+75$	${ }^{\circ} \mathrm{C}$	
Storage temperature range	TSTG	$-40 \sim+150$	$-40 \sim+150$	${ }^{\circ} \mathrm{C}$	
Junction temperature	Tjmax	150	150	${ }^{\circ} \mathrm{C}$	

※1 Reduced by $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $25^{\circ \circ} \mathrm{C}$, when mounted on a glass epoxy board ($70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$).
$※ 2$ Reduced by $8.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$, when mounted on a glass epoxy board ($70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$).

- Line up Matrix

	BD6761FS	BD6762FV	Unit
Power supply voltage (VCC)	$16 \sim 28$	$16 \sim 28$	V
Drive type	180°	$120^{\circ} / 120^{\circ}$ slope	-
Servo	No	Yes	-

- Electrical Characteristics

BD6761FS (Unless otherwise specified, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=24.0 \mathrm{~V}$)

Parameter	Symbol	Limits			Unit	Conditions
		Min.	Typ.	Max.		
Overall						
Circuit current	ICC	10	15	20	mA	
VREG voltage	VREG	5.5	6	6.5	V	IVREG=-1mA
Hall amp						
Input bias current	IHA	-	0.7	3.0	$\mu \mathrm{A}$	
In-phase input voltage range	VHAR	1.5	-	4.1	V	
Input level	VINH	30	-	250	mVpp	Single-phase Hall amplitude

PWM

High CFE voltage	VHPCFE	3.0	3.5	4.0	V	
Low CFE voltage	VLPCFE	2.1	2.5	2.9	V	
CFE oscillating frequency	FCFE	12	15	18	kHz	RFE $=50 \mathrm{k} \Omega, \mathrm{CFE}=1000 \mathrm{pF}$
PWM on duty offset	DPWM	-1.5	0	1.5	$\%$	

Torque amplifier

High CPOUT input current	ICPOUTH	-	0	1	$\mu \mathrm{~A}$	
Low CPOUT input current	ICPOUTL	-1	0	-	$\mu \mathrm{A}$	
Current limit						
Current detection voltage 1	VCL1	0.391	0.435	0.479	V	For current sense amplifier
Current detection voltage 2	VCL2	0.432	0.480	0.528	V	For current limit comparator
VCL2-VCL1	\triangle VCL	40	45	50	mV	

FG Amp

Input bias current	IBFG	-1	-	1	$\mu \mathrm{~A}$	
Input offset voltage	VBFG	-10	-	10	mV	
High output voltage	VHFG	4.5	5.0	VREG	V	IHFGOUT $=-0.75 \mathrm{~mA}$
Low output voltage	VLFG	-	1.0	1.5	V	ILFGOUT $=2 \mathrm{~mA}$
Low FGS output voltage	VLFGS	-	0.1	0.3	V	ILFGSOUT $=3 \mathrm{~mA}$
Open loop gain	GVFG	45	54	-	dB	$\mathrm{f}=3 \mathrm{kHz}$
Bias voltage	VBIASFG	2.7	3.0	3.3	V	
Hysteresis width	VHYS	100	180	250	mV	

F/R

High input current	IFRL	30	60	90	$\mu \mathrm{A}$	$\mathrm{F} / \mathrm{R}=6 \mathrm{~V}$
Low input current	IFRH	-10	0	10	$\mu \mathrm{A}$	$\mathrm{F} / \mathrm{R}=0 \mathrm{~V}$
High input level	VIHFR	2.2	-	VREG	V	Reverse rotation
Low input level	VILFR	0	-	0.8	V	Forward rotation
ACC and DEC						
High ACC input current	IACCH	30	60	90	$\mu \mathrm{A}$	ACC=6V
Low ACC input current	IACCL	-10	0	10	$\mu \mathrm{A}$	ACC=0V
High DEC input current	IDECH	30	60	90	$\mu \mathrm{A}$	DEC=6V
Low DEC input current	IDECL	-10	0	10	$\mu \mathrm{A}$	DEC=0V
Accelerating current	ISS	-260	-200	-140	$\mu \mathrm{A}$	$\mathrm{RCP}=13.5 \mathrm{k} \Omega, \mathrm{ACC}=\mathrm{L}$
Decelerating current	ISO	140	200	260	$\mu \mathrm{A}$	$\mathrm{RCP}=13.5 \mathrm{k} \Omega$, DEC=L
High ACC input level	VIHACC	2.2	-	VREG	V	
Low ACC input level	VILACC	0	-	0.8	V	
High DEC input level	VIHDEC	2.2	-	VREG	V	
Low DEC input level	VILDEC	0	-	0.8	V	
High-side output						
High-side voltage	VHG	Vcc+5	Vcc+6	Vcc+7	V	
Pull-down resistor	RHD	70	100	130	$\mathrm{k} \Omega$	
Low-side output						
Low-side voltage	VLG	9.5	10.5	11.5	V	
Pull-down resistor	RLD	70	100	130	$\mathrm{k} \Omega$	
Booster						
Boost voltage	VG	Vcc+5	Vcc+6	Vcc+7	V	
CP1 oscillating frequency	FCP1	35	62.5	85	kHz	

BD6762FV (Unless otherwise specified, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=24 \mathrm{~V}$)

Parameter	Symbol	Limits			Unit	Conditions
		Min.	Typ.	Max.		
Overall						
Circuit current 1	ICCS	5.1	7.6	10.2	mA	ST/SP=OPEN
Circuit current 2	ICC	10	17	25	mA	ST/SP=GND
VREG voltage	VREG	4.5	5	5.5	V	IVREG=-1mA
Low voltage protection level	VUVON	9.5	11.5	13.5	V	
Low voltage protection hysteresis level	VUVHYS	0.4	0.5	0.6	V	
Hall amp						
Input bias current	IBH	-	1	3	$\mu \mathrm{A}$	
In-phase input voltage range	VHAR	0	-	3	V	
Input level	VINH	50	-	-	mVp-p	
PWM						
High CFE voltage	VCFEH	2.6	2.9	3.2	V	
Low CFE voltage	VCFEL	1.2	1.4	1.6	V	
CFE oscillating frequency	FCFE	13	16	19	kHz	RFE=20K, CFE=1000pF
REF voltage	VRFE	0.75	0.95	1.15	V	
FG amp						
Input bias current	IFGM	-1	-	1	$\mu \mathrm{A}$	
Input offset voltage	VFGOF	-10	-	10	mV	
High output voltage	VFGOH	3.5	4.0	-	V	$\mathrm{I}=-0.5 \mathrm{~mA}$
Low output voltage	VFGOL	-	1.0	1.5	V	$\mathrm{I}=0.5 \mathrm{~mA}$
Low FGS output voltage	VFGSL	-	0.1	0.3	V	$\mathrm{I}=2 \mathrm{~mA}$
Open loop gain	GFG	45	54	-	dB	$\mathrm{f}=3 \mathrm{kHz}$
Bias voltage	VBFG	2.25	2.50	2.75	V	
Hysteresis width	VFGHYS	100	180	250	mV	
Integration amp						
Di clamp voltage 1	VDI1	1.5	2.1	2.7	V	INTIN=0.1mA
Di clamp voltage 2	VDI2	0.5	0.7	0.9	V	INTOUT $=0.1 \mathrm{~mA}$
Bias voltage	VBERR	2.25	2.50	2.75	V	INTIN=INTOUT
Speed discriminator						
High output voltage	VDOH	VREG-0.3	VREG-0.1	-	V	$\mathrm{l}=-0.1 \mathrm{~mA}$
Low output voltage	VDOL	-	0.1	0.3	V	$\mathrm{I}=0.1 \mathrm{~mA}$
PLL						
High output voltage	VPOH	VREG-0.45	VREG-0.15	-	V	$\mathrm{I}=-0.1 \mathrm{~mA}$
Low output voltage	VPOL	-	0.15	0.45	V	$\mathrm{I}=0.1 \mathrm{~mA}$
Lock detection						
Low output voltage	VLDL	-	0.15	0.3	V	$\mathrm{I}=2 \mathrm{~mA}$
Lock protection						
CLK cycle for protection circuit	TLP	13	20	27	msec	$\mathrm{LP}=0.1 \mu \mathrm{~F}$
VCO						
CLK input frequency range	FCLK	0.2	-	2.5	kHz	Designed value (VCO alone)
High-level CLK input voltage	VCKH	2.2	-	VREG	V	
Low-level CLK input voltage	VCKL	0	-	0.8	V	
High-level CLK input current	ICKH	-10	-	10	$\mu \mathrm{A}$	
Low-level CLK input current	ICKL	-140	-100	-60	$\mu \mathrm{A}$	

BD6762FV (Unless otherwise specified, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=24 \mathrm{~V}$)

Parameter	Symbol	Limits			Unit	Conditions
		Min.	Typ.	Max.		
Start/Stop						
High-level ST/SP input voltage	VSTH	2.2	-	VREG	V	STOP
Low-level ST/SP input voltage	VSTL	0	-	0.8	V	START
High-level ST/SP input current	ISTH	-10	0	10	$\mu \mathrm{A}$	
Low-level ST/SP input current	ISTL	-70	-50	-30	$\mu \mathrm{A}$	
Forward rotation/Reverse rotation						
High-level FR input voltage	VFRH	2.2	-	VREG	V	Reverse rotation
Low-level FR input voltage	VFRL	0	-	0.8	V	Forward rotation
High-level FR input current	IFRH	-10	0	10	$\mu \mathrm{A}$	
Low-level FR input current	IFRL	-70	-50	-30	$\mu \mathrm{A}$	
120° Slope switching						
High-level 120/slope input voltage	VANH	2.2	-	VREG	V	120°
Low-level 120/slope input voltage	VANL	0	-	0.8	V	120° slope
High-level 120/slope input current	IANH	-10	0	10	$\mu \mathrm{A}$	
Low-level 120/slope input current	IANL	-70	-50	-30	$\mu \mathrm{A}$	
Short brake						
High-level SB input voltage	VSBH	2.2	-	VREG	V	Short brake operation
Low-level SB input voltage	VSBL	0	-	0.8	V	Short brake clear
High-level SB input current	ISBH	-10	0	10	$\mu \mathrm{A}$	
Low-level SB input current	ISBL	-70	-50	-30	$\mu \mathrm{A}$	
Current limit						
Current detection voltage	VCL	0.23	0.26	0.29	V	
Booster						
CP1 oscillating frequency	FCP1	75	125	175	kHz	
VG step-up voltage	VG	VCC+5.7	VCC+6.7	VCC+7.7	V	
High-side output						
High output voltage 1	VHHG1	VCC+5.8	VCC+6.8	VCC+7.8	V	$\mathrm{VG}=31 \mathrm{~V}$
High output voltage 2	VHHG2	VCC+3.8	VCC+4.8	VCC+5.8	V	$\mathrm{lo}=-1 \mathrm{~mA}$
Low output voltage 1	VHLG1	-	0.1	0.3	V	
Low output voltage 2	VHLG2	-	0.5	1.0	V	$\mathrm{lo}=5 \mathrm{~mA}$
Clamp voltage	VHCL	10	11	12	V	
Low-side output						
High output voltage 1	VLHG1	9.8	10.8	11.8	V	
High output voltage 2	VLHG2	9.0	10.0	11.0	V	$10=-5 \mathrm{~mA}$
Low output voltage 1	VLLG1	-	0.1	0.3	V	
Low output voltage 2	VLLG2	-	0.3	0.5	V	$\mathrm{lo}=5 \mathrm{~mA}$

－Reference Data

Fig． 1 Circuit current（BD6761FS）

Fig． 4 Circuit current（BD6762FV）

Fig． 2 VREG Voltage（BD6761FS）

Fig． 5 VREG Voltage（BD6762FV）

Fig． 3 VG Voltage（BD6761FS）

Fig． 6 VG Voltage（BD6762FV）

－Power Dissipation Reduction

Fig． 7 BD6761FS Power Dissipation Reduction Reduced by $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$ ，when mounted on a glass epoxy board（ $70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ ）．

Fig． 8 BD6762FV Power Dissipation Reduction Reduced by $8.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$ ，when mounted on a glass epoxy board（ $70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ ）$/^{\circ} \mathrm{C}$ で軽減。

-Block Diagram, Application Circuit Diagram, and Pin Function
 1)BD6761FS

Fig. 9 BD6761FS Block Diagram
BD6761FS pin Function

No.	$\begin{gathered} \text { Pin } \\ \text { name } \end{gathered}$	Function	No.	Pin name	Function
1	GND	GND pin	17	RFE	CFE current control pin
2	CP1	CP1 pin	18	CFE	PWM frequency control pin
3	UHG	U-phase high-side FET gate pin	19	CNF	Phase compensation pin
4	ULG	U-phase low-side FET gate pin	20	F/R	Forward/reverse rotation switching pin
5	VHG	V-phase high-side FET gate pin	21	DEC	Deceleration signal input pin
6	VLG	V-phase low-side FET gate pin	22	ACC	Acceleration signal input pin
7	WHG	W-phase high-side FET gate pin	23	RCP	CPOUT current control pin
8	WLG	W-phase low-side FET gate pin	24	CPOUT	Charge pump output / Torque control signal input pin
9	CL	Motor current detection pin			
10	PH	Peak hold pin	25	VREG	VREG pin
11	HU+	Hall signal input pin	26	FGIN+	FG input + pin
12	HU-	Hall signal input pin	27	FGIN-	FG input - pin
13	HV+	Hall signal input pin	28	FGOUT	FG output pin
14	HV-	Hall signal input pin	29	FGSOUT	FGS output pin
15	HW+	Hall signal input pin	30	VCC	VCC pin
16	HW-	Hall signal input pin	31	VG	Boost pin
			32	CP2	CP2 pin

Fig. 10 BD6762FV Block Diagram
BD6762FV pin Function

No.	Pin name	Function	No.	Pin name	
1	GND	GND pin	21	ST/SP	Start/Stop pin
2	RF	Motor current detection pin	22	FR	Forward/reverse rotation switching pin
3	UHG	U-phase high-side FET gate pin	23	SB	Short brake pin
4	U	Protection pin for U-phase high-side FET GS breakdown voltage	24	$120 /$ SL	120% slope switching pin
5	ULG	U-phase low-side FET gate pin	25	FGIN+	FG amplifier input + pin
6	VHG	V-phase high-side FET gate pin	26	FGIN-	FG amplifier input - pin
7	V	Protection pin for V-phase high-side FET GS breakdown voltage	27	FGOUT	FG amplifier output pin
8	VLG	V-phase low-side FET gate pin	28	FGSOUT	FGS output pin
9	WHG	W-phase high-side FET gate pin	29	CLKIN	Reference CLK input pin
10	W	Protection pin for W-phase high side FET GS breakdown voltage	30	LPF	VCO system loop filter connection pin
11	WLG	W-phase low-side FET gate pin	31	POUT	PLL output pin
12	VREG	Internal power supply 5 V output pin	32	DOUT	Speed discriminator output pin
13	CFE	PWM frequency control pin	33	INTIN	Integration amplifier input pin
14	RFE	CEF charge/discharge current control pin	34	INTOUT	Integration amplifier output pin
15	HU+	Hall signal input pin	35	LP	Motor lock protection time setting pin
16	HU-	Hall signal input pin	36	LD	Motor rotation number lock detection pin
17	HV+	Hall signal input pin	37	VCC	VCC pin
18	HV-	Hall signal input pin	38	VG	Step-up voltage output pin
19	HW+	Hall signal input pin	39	CP2	Capacitor connection pin (to CP1)
20	HW-	Hall signal input pin	40	CP1	Capacitor connection pin (to CP2)

- I/O Logic

1)BD6761FS

Forward rotation (F/R=Low)

	Input conditions			Output state					
Pin No.	15	17	19	3	5	7	4	6	8
	HU+	HV+	HW+	UHG	VHG	WHG	ULG	VLG	WLG
Condition 1	L	M	H	H	H	L	L	L	H
Condition 2	L	H	H	H	PWM	L	L	PWM	H
Condition 3	L	H	M	H	L	L	L	H	H
Condition 4	L	H	L	H	L	PWM	L	H	PWM
Condition 5	M	H	L	H	L	H	L	H	L
Condition 6	H	H	L	PWM	L	H	PWM	H	L
Condition 7	H	M	L	L	L	H	H	H	L
Condition 8	H	L	L	L	PWM	H	H	PWM	L
Condition 9	H	L	M	L	H	H	H	L	L
Condition 10	H	L	H	L	H	PWM	H	L	PWM
Condition 11	M	L	H	L	H	L	H	L	H
Condition 12	L	L	H	PWM	H	L	PWM	L	H

Reverse rotation (F/R=High)

	Input conditions				Output state					
Pin No.	15	17	19	3	5	7	4	6	8	
	HU+	HV+	HW+	UHG	VHG	WHG	ULG	VLG	WLG	
Condition 1	L	M	H	L	L	H	H	H	L	
Condition 2	L	H	H	L	PWM	H	H	PWM	L	
Condition 3	L	H	M	L	H	H	H	L	L	
Condition 4	L	H	L	L	H	PWM	H	L	PWM	
Condition 5	M	H	L	L	H	L	H	L	H	
Condition 6	H	H	L	PWM	H	L	PWM	L	H	
Condition 7	H	M	L	H	H	L	L	L	H	
Condition 8	H	L	L	H	PWM	L	L	PWM	H	
Condition 9	H	L	M	H	L	L	L	H	H	
Condition 10	H	L	H	H	L	PWM	L	H	PWM	
Condition 11	M	L	H	H	L	H	L	H	L	
Condition 12	L	L	H	PWM	L	H	PWM	H	L	

<Input conditions> Hall input voltage
H: 3.05 V
M: 3.0V
L: 2.95 V
<Output criteria>
High-side FET gate voltage $L \leqq 1 V, V G-1 V \leqq H$ Low-side FET gate voltage $\mathrm{L} \leqq 1 \mathrm{~V}, 9 \mathrm{~V} \leqq \mathrm{H}$

ACC, DEC

	Input conditions		Output state	
Pin No.	21	22	24	Short brake
	DEC	ACC	CPOUT	
Condition 1	H	H	OPEN	OFF
Condition 2	H	L	H	OFF
Condition 3	L	H	L	OFF
Condition 4	L	L	L	ON

<Input conditions>
ACC, DEC input conditions
$\mathrm{H}: 2.2 \mathrm{~V}$
$\mathrm{~L}: 0.8 \mathrm{~V}$
<Output criteria>
-CPOUT
$R C P=13.5 \mathrm{k} \Omega$, $\mathrm{CPOUT}=3 \mathrm{~V}$
High: Current outflow more than $140 \mu \mathrm{~A}$ from CPOUT pin Low: Current inflow more than $140 \mu \mathrm{~A}$ to CPOUT pin OPEN: CPOUT pin current $-10 \mu \mathrm{~A} \leqq \mathrm{ICPOUT} \leqq 10 \mu \mathrm{~A}$
oShort brake function
On state
High-side FET gate voltage $\leqq 1 \mathrm{~V}$
Low-side FET gate voltage $\geqq 9 \mathrm{~V}$
2)BD6762FV

Forward rotation (F/R=Low), 120° (120/SL=High)

Pin No.	Input conditions			Output state								
				High-side gate			Low-side gate			Output		
	15	17	19	3	6	9	5	8	11	4	7	10
	HU+	HV+	HW+	UHG	VHG	WHG	ULG	VLG	WLG	U	V	W
Condition 1	L	L	H	L	H	L	L	L	H	M	H	L
Condition 2	H	L	H	L	H	L	H	L	L	L	H	M
Condition 3	H	L	L	L	L	H	H	L	L	L	M	H
Condition 4	H	H	L	L	L	H	L	H	L	M	L	H
Condition 5	L	H	L	H	L	L	L	H	L	H	L	M
Condition 6	L	H	H	H	L	L	L	L	H	H	M	L

Reverse rotation ($\mathrm{F} / \mathrm{R}=\mathrm{High}$), 120° (120/SL=High)

Pin No.	Input condition			Output state								
				High-side gate			Low-side gate			Output		
	15	17	19	3	6	9	5	8	11	4	7	10
	HU+	HV+	HW+	UHG	VHG	WHG	ULG	VLG	WLG	U	V	W
Condition 1	L	L	H	L	L	H	L	H	L	M	L	H
Condition 2	H	L	H	H	L	L	L	H	L	H	L	M
Condition 3	H	L	L	H	L	L	L	L	H	H	M	L
Condition 4	H	H	L	L	H	L	L	L	H	M	H	L
Condition 5	L	H	L	L	H	L	H	L	L	L	H	M
Condition 6	L	H	H	L	L	H	H	L	L	L	M	H

ST/SP	Mode
OPEN or High	Standby
L	Operating mode

<Input condition>			
Hall input voltage	H	$:$	2.0 V
	M	$:$	1.5 V
	L	$: 1.0 \mathrm{~V}$	
HU-, HV-, HW-		$: \mathrm{M}$	

<Output criteria>
High-side FET gate voltage : L \leqq output (U, V, W) + 1V, VG-1V \leqq H
Low-side FET gate voltage : L $\leqq 1 \mathrm{~V}, 9 \mathrm{~V} \leqq \mathrm{H}$

- Timing Chart

1) BD6761FS

-.. Triangular waveform amplitude
Fig. 11 BD6761FS I/O Timing Chart
SINU, SINV, and SINW are the internal IC signals synthesized by the Hall amplifier.
2) BD6762FV

Fig. 12 BD6762FV I/O Timing Chart

- I/O Circuit Diagram

1) BD 6761 FS

OHigh-side gate

OLow-side gate

OBooster

OCFE pin

OCPOUT pin

OACC, DEC, FR pins

OPeak hold

OFG amplifier input

OCurrent sense amplifier

OFG amplifier output

OCurrent limit

OFGSOUT pin

2)BD6762FV

ORF pin

OCFE pin

O HU+, HV+, HW+, HU-, HV-, HW- pins

OCLKIN
OFGIN+, FGOUT pins

OUHG, VHG, WHG, U, V, W pins

ORFE pin

OFGIN+, FGIN- pins

OPOUT, DOUT pins
POUT(pin31)
DOUT(pin32)

OLPF pin

OLP pin

OlD pin

O VG, CP2, CP1 pins

- IC Operation

1) Hall input and output

For the hall input signal, the wave is shaped by the hall amplifier to generate the drive signal.
This drive signal is amplified in the predriver block and the gate voltage is output for N -channel MOS FET.
2) PWM operation

PWM oscillating frequency is determined by the triangular waveform frequency which is decided by the external constant.
This triangular waveform voltage and the listed voltage in the following chart are compared to perform PWM drive.

	Rfe, RFE	Cfe, CFE	Cfe, CFE pin charge/discharge current I	Frequency (Typ.)	Comparison voltage
BD6761FS	$50 \mathrm{k} \Omega$	1000 pF	$1.6 \mathrm{~V} / \mathrm{R}$	16.5 kHz	Drive signal shaped by the hall amplifier
BD6762FV	$20 \mathrm{k} \Omega$	1000 pF	VRFE/R	16 kHz	Integration amplifier output pin voltage

3) Booster circuit (step-up circuit) (common)

BD6761FS (Frequency $=62.5 \mathrm{kHz}$) and BD6762FV (Frequency $=125 \mathrm{kHz}$) generate the triangular waveform when the internal oscillator generates free-run oscillation and the rectangular waveform is generated at CP1. When a capacitor is connected between CP1 and CP2, and VG and GND, the step-up voltage is generated at VG pin. In this case, set VCC so that VG does not exceed the absolute maximum ratings (36 V).

	Triangular waveform oscillating frequency	Charge pump voltage (VG pin voltage)
BD6761FS	62.5 kHz	VCC+6V
BD6762FV	125 kHz	VCC+6.7V

4) FG amplifier (common)

Set the FG amplifier gain so that the FGOUT pin is within the range of high and low output voltage and the amplitude is higher than the hysteresis width (250 mV : max) of the HYS amplifier.
FGSOUT pin uses an open collector format. Use in the condition as it is pulled up to the power supply with the resistor. At this time, pay attention so that the voltage higher than 36 V is not applied to the FGSOUT pin.
5) ACC, DEC circuits (BD6761FS)

When a resistor is connected to the RCP pin and the low voltage is input to the ACC pin, the current flows out from the CPOUT pin. When the low signal is input to the DEC pin, the current flows in to the CPOUT pin. Furthermore, when the ACC pin and DEC pin both set to low, the current flows in to the CPOUT pin. This current can be converted to the voltage by connecting a filter between the CPOUT and GND pins.
The voltage generated at the CPOUT pin controls the PWM's on-duty and maintains the constant motor rotation by inputting the controlled signal to ACC and DEC pins.
6) Current limit operation

When the CL voltage (BD6761FS) and RF voltage (BD6762FV) become the current limit voltage, the current limit circuit operates and works to limit PWM on_dutty. It also turns off the current limit circuit (current limit clear) at the peak of PWM triangular waveform and makes the current flow again. Output current lomax at this time are shown in the table.

	Current limit current
BA6761FS	Iomax=0.48/RNF [A]
BA6762FV	Iomax $=0.26 /$ RNF $[A]$

7) Output simultaneous on prevention circuit (BD6761FS, BD6762FV)

When the low-side gate voltage becomes high while the high-side gate voltage is low, or when the high-side gate voltage becomes high while the low-side gate voltage is low, the simultaneous on prevention time is provided with $t=3.2$ μs (TYP value). When the input capacity of external FET is C and the gate connection resistor is R, set R to satisfy the following equation so that the simultaneous on prevention time as mentioned above is not exceeded.

$$
C \leqq \frac{1.8 \mu}{10 \times(24+\mathrm{R})}
$$

Check that the simultaneous on is not made in the actual operation and then set C and R .

Fig. 13 High/Low-side Simultaneous On Prevention Timing Chart
8) Short brake (BD6761FS and BD6762FV)

BD6761FS operates the short brake action with the ACC and DEC pins set to low, and BD6762FV does with the SB pin set to OPEN or high. At the time of short brake, the high-side gate is turned off and the low-side is turned on. At the time of short brake operating, the current flows to the output FET, which is decided by the motor's counter electromotive voltage and coil impedance. Since this current flows via path which does not run through the overcurrent protection (current limit) detection resistor, the overcurrent protection does not operate as IC operating. Therefore, the current more than the overcurrent protection set current may flow to the output FET, pay attention so that it does not exceed the output FET rating.
9) Forward/reverse rotation circuit (BD6761FS and BD6762FV)

Forward /reverse rotation of motor can be switched according to the FR pin input conditions. Logics of the hall input and output conditions according to the FR pin input conditions are shown in the I/O conditions table (P.10). If the FR pin is switched during the motor rotation, since the simultaneous on prevention circuit in IC operates, the feed through current does not flow. However, since the motor current flows in the direction to the power source due to the electromotive force, the voltage may be raised if the power source does not have the power supply voltage absorption ability. Examine the capacitor characteristics between the power supply and ground sufficiently and then pay attention so that the power supply voltage and step-up voltage do not exceed the absolute maximum ratings. When the physical measures are taken such as increasing the capacitor value which is connected between the power supply and ground, check the characteristics enough prior to use.
10) Start/stop circuit (BD6762FV)

When the ST/SP pin is in the sate of OPEN or high, IC becomes standby. In the case of standby, some circuits operation are turned off to reduce the current consumption.
When the ST/SP pin is in the state of low, IC becomes operating.
11) Low voltage protection circuit (BD6761FS and BD6762FV)

This IC builds in the low voltage protection circuit. When VCC becomes lower than 11.5 V (Typ.), the high-side and low-side gates are both turned off to make the coil turn off. Protection off voltage is 12.0 V (Typ.) and hysteresis width is 0.5 V (Typ.). Since the motor locking protection detection circuit operates in BD6762FV during the low voltage protection operation, if the low voltage protection operating time becomes longer than the motor locking protection detection time, the operation moves to the motor locking protection operation after the low voltage protection operation.
12) Built-in 120° slope PWM logic (BD6762FV)

It is possible to perform 120° drive by setting $120 /$ SL pin to OPEN or making high. 120° slope drive is possible by setting the $120 /$ SL pin to OPEN or making high. Low noise design is realized by reducing the electromagnetic sound generated at the time of phase switching by means of gradually changing the output PWM on-duty during 120° slope energization. However, at the time of startup or the hall input frequency is lower than about 3 Hz (Typ. value), it becomes 120° drive. When the hall input frequency is more than about 3 Hz (Typ. value) and the rise of hall U-phase is detected 7 times, it switches to the 120° slope drive.
13) Servo circuit (BD6762FV)

- Frequency multiplication circuit (Dividing period) (BD6762FV)

This IC builds in the frequency multiplication circuit.
Servo circuit is composed of the feedback loop as shown in the diagram and flows in/out the current ($22 \mu \mathrm{~A}$: Typ.) to the LPF pin (30 pin) by detecting the phase difference between the CLKIN pin (29 pin) and the frequency dividing unit output FCOMP. The phase difference signal output to the LPF pin (30 pin) is smoothed by the filter which is connected at the IC external of the LPF pin (30 pin) and this voltage is input to the VCO (Voltage control oscillation circuit) to decide the frequency for the internal signal FVCO. Since the dividing ratio of this frequency dividing unit is set to 1024, the relation of

$$
\mathrm{FVCO}[\mathrm{~Hz}]=1024 \cdot \mathrm{FCOMP}[\mathrm{~Hz}]
$$

can be obtained, and the FCOMP and CLKIN have the same frequency according to the feedback loop as shown in the following diagram, therefore the multiplied frequency of 1024 times of FCOMP or CLKIN is acquired as the FVCO frequency.

- Speed discriminator (BD6762FV)

The FGSOUT signal (28 pin) which detects the motor rotation speed and the reference clock in IC are compared and the acceleration/deceleration signal is output to the DOUT pin (32 pin). Reference clock is the signal (FVCO) that the CLKIN signal (29 pin) is multiplied by 1024. When the FG period is short to the reference clock period, it is determined that the motor revolution speed is too fast and the difference from the reference clock period is output to the DOUT pin as the deceleration command. When the FG period is long, the difference is output as an accelerating command.

- PLL (BD6762FV)

Phases of the FGSOUT (28 pin) signal which detected the motor revolution speed and the CLKIN (29 pin) input from the external are compared, and if the FG phase leads to CLKIN (28 pin), the difference is output as the deceleration command. If the FG phase lags, the difference is output as the acceleration command.

- Integration amplifier (BD6762FV)

Speed error of the reference clock which is obtained in the speed discriminator block and the FG signal, and the phase difference signal of the CLKIN acquired in PLL block and the FG are integrated together and smoothed to become the DC voltage. This smoothed signal determines the PWM on-duty.
14) Speed lock detection circuit (BD6762FV)

When the motor speed is within $\pm 6.25 \%$ range to the CLKIN signal (29 pin), L is output to the LD pin (36 pin) output. Since the LD pin (36 pin) has the open/drain output format, use as it is pulled up to the power supply with the resistor $(100 \mathrm{k} \Omega)$. At this time, pay attention so that the voltage more than 36 V is not applied to the LD pin.
15) Motor locking protection (BD6762FV)

Motor locking protection circuit judges he motor is in the locking condition when the motor speed is not in the lock range (preset value: $\pm 6.25 \%$) and the motor locking detection time TLP elapsed, the high-side and low-side output gates are both turned off.Motor locking protection can be cleared by making the condition Low after setting the ST/SP pin or the SB pin to OPEN or making high. Motor locking detection time $T_{L P}$ is determined by the capacitor C 7 which is connected to the LP pin and the count number CLP (preset value: 96) of the internal counter.

$$
T_{L P}=2 \times 10^{5} \times C 7 \times C L P[S]
$$

Selecting application components

Design method
(1)Output FET
This IC is the predriver for high-side and low-side N-channel
MOS FET drive. Select the FET with the required current
capacity to drive the motor.
(2)Diodes (BD67861FS)
Diodes are required to protect between the gate and source of
output FET.
(3)Protection capacitor between the output FET drain and source
Check the operation so that the voltage between the output FET
drain and source does not exceed the absolute maximum
ratings due to the fluctuation of VCC at the time of PWM driving
and then set the value.
(4)VB current capacitance capacitor
Current capacity from VG changes according to the capacitance
to be connected. However, if the capacitance is too large, the
following action is delayed when VCC starts up, and the
magnitude relation becomes VCC > VG which should be VCC <
VG usually and the large current may flow in internal block
circuits and result in damaging the circuits. When VG is directly
supplied from the external block without using the internal
circuits, disconnect the capacitor between CP1 and CP2, and
connect the $20 k \Omega$ resistor (for noise reduction) between CP1
and ground to use.

(5)PWM frequency

PWM frequency can be adjusted by the capacitance and resistance to connect. When the frequency is high, the heat generation increases due to switching loss. When the frequency is low, it enters audible range. Check the operation with the actual product and determine the constant.
(6) Hall input level

The current value to feed to the hall element changes by changing the resistance and the amplitude level of hall element can be adjusted.
Amplitude level increases when the resistance value is chosen smaller by considering the noise affect, but pay attention also to the hall input voltage range. BD6761FS (1.5V to 4.1 V) and BD6762FV (0V to 3V)

(7)VREG

VREG which is the internal voltage output pin drives the circuits in IC. Connect the capacitor to stabilize it.
8)Current limit

The current flowing to FET can be controlled by setting the resistance value. Determine the constant according to the motor specifications.
(9)Hall input noise

Insert capacitors between the hall phases in order to eliminate the hall input noise due to the effect by the pattern routing design.
(10)CL (RF) voltage smoothing low pass filter

Smooth the CL (RF) voltage which has PWM noise through the low pass filter.
(11)FG AMP constant setting

FG AMP gain: GFG is the ratio of R1 and R2 calculated by the following equation.
GFG=20log R2/R1 [dB]
Set up the gain so that the FGOUT amplitude is large enough to the hysteresis level of the hysteresis comparator and it cannot be clamped by the high and low output voltages
(VFGOH and VFGOL).

Design example
Recommended FET RDS035L03 (A)

Recommended diode 1SS355
Insert the diode in the direction from high-side
FET source to the gate side (in the forward direction).
A value of 0.01μ to $0.1 \mu \mathrm{~F}$ is recommended.
A value of $0.1 \mu \mathrm{~F}$ is appropriate for the capacitance. Insert the capacitor between the output FET drain and source. (Position at the close point to FET as much as possible.)
A value of $0.01 \mu \mathrm{~F}$ is appropriate for the capacitor between CP1 and CP2
(A value of $0.01 \mu \mathrm{~F} 0.1 \mu \mathrm{~F}$ is recommended.)
A value of $0.1 \mu \mathrm{~F}$ is appropriate for the capacitor between VG and VCC.

The following constants are appropriate
BD6761FS Cfe $=1000 \mathrm{pF}$, $\mathrm{Rfe}=50 \mathrm{k} \Omega$, fo $=16.5 \mathrm{kHz}$ (TYP.) BD6762FV Cfe=1000pF, Rfe=20k Ω, fo $=16.0 \mathrm{kHz}$ (TYP.)

Connect to the transistor base via $1 \mathrm{k} \Omega$ resistor (base current limit) from the VREG pin. Connect the transistor collector to VCC, the emitter to the hall element via R1. Connect the ground side of hall element to the ground via R2.
A value of 200Ω to $1 \mathrm{k} \Omega$ is recommended. A value of 200Ω is appropriate, respectively. When connecting to the VCC side directly with R1, values of $\mathrm{R} 1=5 \mathrm{k} \Omega$ and $\mathrm{R} 2=2 \mathrm{k} \Omega$ are appropriate.
A value of $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ is recommended. A value of 0.1μ is appropriate.

Following equation shows the current value.
BD6761FS Iomax=0.48/RNF [A]
BD6762FV Iomax=0.26/RNF [A]
A value of $0.01 \mu \mathrm{~F}$ is appropriate for the capacitor to be installed between the hall phases.
A value of $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ is recommended.
A value of $C=470 \mathrm{pF}$ and $\mathrm{R}=1 \mathrm{k} \Omega$ is appropriate for the low pass filter.
For the external constant, since the impedance is high, make sure to design the pattern with the shortest circuit route so that the circuit is hard to be affected by noise.
R1 and C 1 form a high pass filter and R2 and C2 form a low pass filter. Each cut off frequency; fMPF and fLPF is determined by the following equation.
fMPF=1/2 π R1C1, fLPF= $1 / 2 \pi R 2 C 2$
Set the value so that the main signal from PG by the motor is not attenuated but the unnecessary noise can be attenuated.

Design method	Design example
(12)Phase compensation capacitor (BD6761FS) Phase compensation is performed in the output of the CS amplifier. The capacitance value should be selected according to the servo constant, and proper motor operation should be confirmed. When the capacitance is large, the I/O response becomes bad. When it is small, the output becomes easy to oscillate.	A value of $0.001 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ is recommended. A value of $0.001 \mu \mathrm{~F}$ is appropriate for BA6680FS. A value of $0.1 \mu \mathrm{~F}$ is appropriate for BD6761FS.
(13VCC pin Set up the capacitance for the stabilization and noise reduction on the power line.	A value of value $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ is recommended. A value of $10 \mu \mathrm{~F}$ is appropriate.
(14)Charge pump filter(BD6761FS) Filter composed of C3, C4 and R3 smoothes the current pulses output from the CPOUT pin and converts it to DC. This impedance Z is shown by the following equation.	Recommended value C 3 : $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$; a value of $0.01 \mu \mathrm{~F}$ is appropriate. C4: $0.033 \mu \mathrm{~F}$ to $0.33 \mu \mathrm{~F}$; a value of $0.1 \mu \mathrm{~F}$ is appropriate. $\mathrm{R} 3: 30 \mathrm{k} \Omega$ to $300 \mathrm{k} \Omega$; a value of $100 \mathrm{k} \Omega$ is appropriate.

$$
Z=R 3 \times \frac{C_{4}}{C 3+C 4} \times \frac{S+\omega_{2}}{S\left(1+\frac{S}{\omega_{1}}\right)}
$$

When the pole frequency is set to fP1 and fP2, they are:
$\mathrm{fP} 1=\omega_{1} / 2 \pi=1 / 2 \pi$ (C3//C4)R3
$\mathrm{fP} 2=\omega_{2} / 2 \pi=1 / 2 \pi \mathrm{C} 4 \mathrm{R} 3$
(15)Output FET gate voltage stabilization resistor

When the noise is generated at the time of external MOSFET on/off due to the rise and fall speed of the IC output, insert the resistor between the IC output and external MOSFET gate.

Establish R so that the simultaneous on prevention time is not exceeded as shown in 7). Output simultaneous on prevention circuit in P.17/24 Operating Explanation.
A value of $R=0 \Omega$ is appropriate.
(16)Peak hold setting capacitor (BD6761FS)

Charges the peak hold on the voltage at the current detection pin CL.
(17)Motor locking detection time setting capacitor (BD6762FV)

Motor locking detection time $T_{\text {LP }}$ is determined by the capacitor
C7 which is connected to the LP pin and the count number CLP
(Preset value: 96) of the internal counter. The $T_{\text {LP }}$ is shown by the following equation.
TLP $=2 \times 10^{5} \times \mathrm{C} 7 \times 96$
(18)Integration amplifier constant setting (BD6762FV)

Speed discriminator side current value ID is shown by $\left|\|_{\mathrm{D}}\right|=2.5 / \mathrm{R} 4$
and the PLL side current value IP is shown by $\left|l_{\mathrm{P}}\right|=2.5 / \mathrm{R} 5$.
Therefore, the current $\mathrm{I}_{\mathbb{N}}$ which flows in the integration AMP input pin INTIN is shown by $l_{I_{N}}=I_{D}+l_{p}$.

A value of $0.33 \mu \mathrm{~F}$ is appropriate.

A value of $0.22 \mu \mathrm{~F}$ is appropriate.

The larger the $\mathrm{l}_{\mathbb{N}}$ is, the higher the integration amplifier gain becomes.
Gains of the speed discriminator and PLL can be set by adjusting R4 and R5.
Gain G is shown by the following equation.

$$
G=\frac{R 6}{R 4 / / R 5} \times \frac{C 6}{C 5+C 6} \times \frac{S+\omega_{2}}{S\left(1+\frac{S}{\omega_{1}}\right)}
$$

When the pole frequency is set to fP1 and fP2, they are:
$\mathrm{fP} 1=\omega_{1} / 2 \pi=1 / 2 \pi(\mathrm{C} 5 / / \mathrm{C} 6) \times \mathrm{R} 6$
$\mathrm{fP} 2=\omega_{2} / 2 \pi=1 / 2 \pi \mathrm{C} 6 \mathrm{R} 6$
(19)LPF external constant (BD6762FV)

Filter composed of C8, C9 and R7 smoothes the current pulses output from the LPF pin and converts it to DC.
This impedance Z is shown by the following equation.

$$
Z=R 7 \times \frac{C 9}{C 8+C 9} \times \frac{S+\omega_{2}}{S\left(1+\frac{S}{\omega_{1}}\right)}
$$

When the pole frequency is set to fP 1 and fP2, they are:
$\mathrm{fP} 1=\omega_{1} / 2 \pi=1 / 2 \pi$ (C8//C9)R7 $\mathrm{fP} 2=\omega_{2} / 2 \pi=1 / 2 \pi \mathrm{C} 9 \mathrm{R} 7$
※Setting values in these materials are only for reference. Actual set may change its characteristics due to the boards layout, wiring and components type to use. Please perform the sufficient verification using the actual product for the field operation.

Recommended value

$\mathrm{C} 8: 0.1 \mu \mathrm{~F}$ to $0.6 \mu \mathrm{~F}$; a value of $0.33 \mu \mathrm{~F}$ is appropriate.
$\mathrm{C} 9: 0.1 \mu \mathrm{~F}$ to $0.6 \mu \mathrm{~F}$; a value of $0.33 \mu \mathrm{~F}$ is appropriate.
$\mathrm{R} 7: 0.5 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$; a value of $2 \mathrm{k} \Omega$ is appropriate.

Recommended value

R4: $10 \mathrm{k} \Omega$ to $40 \mathrm{k} \Omega$; a value of $20 \mathrm{k} \Omega$ is appropriate.
$R 5$: $300 \mathrm{k} \Omega$ to $3 \mathrm{M} \Omega$; a value of $1 \mathrm{M} \Omega$ is appropriate.
$\mathrm{R} 6: 100 \mathrm{k} \Omega$ to $500 \mathrm{k} \Omega$; a value of $220 \mathrm{k} \Omega$ is appropriate.
$\mathrm{C} 5: 0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$; a value of $0.047 \mu \mathrm{~F}$ is appropriate.
C6: $0.033 \mu \mathrm{~F}$ to $1.0 \mu \mathrm{~F}$; a value of $0.47 \mu \mathrm{~F}$ is appropriate.

- Notes for use

(1) Absolute maximum ratings

This product is subject to a strict quality management regime during its manufacture. Use of the IC in excess of absolute maximum ratings such as the applied voltage or operating temperature range may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure such as a fuse should be implemented when use of the IC in a special mode where the absolute maximum ratings may be exceeded is anticipated.
(2) Connecting the power supply connector backward

Connecting the power supply connector backwards may result in damage to the IC. For the protection of the IC from reversed connections, provide an appropriate measure, such as the insertion of an external diode each between the power supply and the power supply pin of the IC and between the motor coils.
(3) Power supply lines

The regenerated current resulting from the back EMF of the motor will return. Therefore, take an appropriate measure, such as the insertion of a capacitor between the power supply and GND. Determine the capacitance in full consideration of all the characteristics of the electrolytic capacitor, because the electrolytic capacitor may loose some capacitance at low temperatures. If the connected power supply does not have sufficient current absorption capacity, regenerative current will cause the voltage on the power supply line to rise, which combined with the product and its peripheral circuitry may exceed the absolute maximum ratings. It is recommended to implement a physical safety measure such as the insertion of a voltage clamp diode between the power supply and GND pins.
(4) GND potential

Ensure a minimum GND pin potential in all operating conditions.
(5) Setting of heat

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.
(6) Pin shorts and mistake fitting

Use caution when orienting and positioning the IC for mounting on printed circuit boards. Improper mounting may result in damage to the IC. Shorts between output pins or between output pins and the power supply and GND pins caused by the presence of a foreign object may result in damage to the IC.
(7) Actions in strong magnetic field Use caution when using the IC in the presence of a strong magnetic field as doing so may cause the IC to malfunction.
(8) ASO

When using the IC, set the output transistor so that it does not exceed absolute maximum ratings or ASO.
(9) Thermal shutdown circuit (TSD)

This IC incorporates a TSD circuit. If the chip becomes the following temperature, coil output to the motor will be open. The TSD circuit is designed only to shut the IC off to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of the TSD circuit is assumed.

	TSD on temperature $\left[{ }^{\circ} \mathrm{C}\right]$ (Typ.)	Hysteresis temperature $\left[{ }^{\circ} \mathrm{C}\right]$ (Typ.)
BD6761FS	175	35
BD6762FV	175	23

(10) PWM drive

Voltage between the output FET drain and source may exceed the absolute maximum ratings due to the fluctuation of VCC at the time of PWM driving. If there is the threat of this problem, it is recommended to take physical countermeasures for safety such as inserting the capacitor between the VCC pin of FET and the detection resistor pin.
(11) Testing on application boards

When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Ground the IC during assembly steps as an antistatic measure, and use similar caution when transporting or storing the IC. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during the inspection process.
(12) Regarding input pin of the IC

This monolithic IC contains $P+$ isolation and P substrate layers between adjacent elements in order to keep them isolated.
P / N junctions are formed at the intersection of these P layers with the N layers of other elements to create a variety of parasitic elements.
For example, when a resistor and transistor are connected to pins as shown in Fig. 14,

- the P/N junction functions as a parasitic diode
when GND > (Pin $A)$ for the resistor or GND > (Pin B) for the transistor (NPN).
- Similarly, when GND > (Pin B) for the transistor (NPN), the parasitic diode described above combines with the N layer of other adjacent elements to operate as a parasitic NPN transistor.
The formation of parasitic elements as a result of the relationships of the potentials of different pins is an inevitable result of the IC's architecture. The operation of parasitic elements can cause interference with circuit operation as well as IC malfunction and damage. For these reasons, it is necessary to use caution so that the IC is not used in a way that will trigger the operation of parasitic elements, such as by the application of voltages lower than the GND (P substrate) voltage to input pins.

Fig. 14 Mimetic Diagram of Parasitic Element
(13) Ground Circuit Pattern

When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the application's reference point so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring pattern of any external parts, either.

-Ordering part number

Part No.

Part No.
6761 6762

Packaging and forming specification E2: Embossed tape and reel

SSOP-A32

SSOP-B40

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System

http://www.rohm.com/contact/

